I am calling Tide and SunLocation and setting some basic vars.
I don't recall why I have byte PWMChannel 6 set, but probably to tell something I am using the expansion. I am with pumps being run on the daylight/actinic channels.
I set ports - hopefully correctly. Then move to tide init and sun init (long/lat for my area).
Question 1: In the void loop I am setting the LED power to start and stop at a set time using StandarLights (set by wizard). This is the first area I was wondering about. If I use Sun/Moon is this necessary?
Question 2: After that I am using PWMChannel 0 - 4 (only using 4 of the 6 expansion) to set when it turns on, ends, and percentages. Again, I think this is overwriting sun routines or guessing anyway.
I now do a bunch of tide stuff (which I also think is wrong) and set sun parameters. Check clouds, check sun, set daylight/actinic channels sync (which I think is in the wrong area), then Set Chanel PWM stuff and go into if else for random waves (which I need to fix).
Comment: While I see I'm setting sun and checking updates I don't think it is being used. Am I missing a function or calling/setting it wrong? I believe I am. Thanks for any guidance.
Code: Select all
#include <ReefAngel_Features.h>
#include <Globals.h>
#include <RA_Wifi.h>
#include <Wire.h>
#include <OneWire.h>
#include <Time.h>
#include <DS1307RTC.h>
#include <InternalEEPROM.h>
#include <RA_NokiaLCD.h>
#include <RA_ATO.h>
#include <RA_Joystick.h>
#include <LED.h>
#include <RA_TempSensor.h>
#include <Relay.h>
#include <RA_PWM.h>
#include <Timer.h>
#include <Memory.h>
#include <InternalEEPROM.h>
#include <RA_Colors.h>
#include <RA_CustomColors.h>
#include <Salinity.h>
#include <RF.h>
#include <IO.h>
#include <ORP.h>
#include <AI.h>
#include <PH.h>
#include <WaterLevel.h>
#include <Humidity.h>
#include <DCPump.h>
#include <ReefAngel.h>
#include <Moon.h>
#include <Tide.h> // testing for tide control
#include <SunLocation.h>
////// Place global variable code below here
Tide tide; // testing for tide control
SunLocation sun;
byte PWMChannel[6];
////// Place global variable code above here
void setup()
{
// This must be the first line
ReefAngel.Init(); //Initialize controller
ReefAngel.AddStandardMenu(); // Add Standard Menu
ReefAngel.Use2014Screen();
ReefAngel.AddPHExpansion(); // pH Expansion Module
// Ports toggled in Feeding Mode
ReefAngel.FeedingModePorts = Port1Bit | Port5Bit | Port6Bit | Port7Bit | Port8Bit;
// Ports toggled in Water Change Mode
ReefAngel.WaterChangePorts = Port1Bit | Port5Bit | Port6Bit | Port7Bit | Port8Bit;
// Ports toggled when Lights On / Off menu entry selected
ReefAngel.LightsOnPorts = 0;
// Ports turned off when Overheat temperature exceeded
ReefAngel.OverheatShutoffPorts = Port7Bit | Port8Bit;
// Use T1 probe as temperature and overheat functions
ReefAngel.TempProbe = T1_PROBE;
ReefAngel.OverheatProbe = T1_PROBE;
// Set the Overheat temperature setting
InternalMemory.OverheatTemp_write( 819 );
// Feeeding and Water Change mode speed
ReefAngel.DCPump.FeedingSpeed=0;
ReefAngel.DCPump.WaterChangeSpeed=0;
// Ports that are always on
ReefAngel.Relay.On( Port1 ); // skimmer
// ReefAngel.Relay.On( Port4 ); // LED Fans
ReefAngel.Relay.On( Port5 ); // RW 4 left side facing tank
ReefAngel.Relay.On( Port6 ); // RW 4 right side facing tank
////// Place additional initialization code below here
tide.Init(40, 5, 10);
tide.SetWaveLength(12*SECS_PER_HOUR);
sun.Init(38.5791, 121.1939); // Rancho Cordova, Ca
////// Place additional initialization code above here
}
void loop()
{
ReefAngel.DCPump.UseMemory = false;
ReefAngel.StandardLights( Port2,9,0,21,0 ); // power to LED power supply
ReefAngel.StandardLights( Port3,8,0,22,0 ); // LED bar
ReefAngel.StandardLights( Port4,9,0,21,0 ); // LED fans
ReefAngel.StandardHeater( Port7,750,800 );
ReefAngel.StandardHeater( Port8,750,800 );
// Channel 0 (1000mA max) - 5 Neutral White
PWMChannel[0]=PWMParabola(9,0,21,0,0,80,0);
// Channel 1 (1000mA max) - 6 Royal Blue + 5 Blue
PWMChannel[1]=PWMParabola(9,0,21,0,0,85,0);
// Channel 2 (700mA max) - 12 Lime
PWMChannel[2]=PWMParabola(9,0,21,0,0,55,0);
// Channel 3 (700mA max) - 5 Violet UV + 4 Deep Red (660nm)
PWMChannel[3]=PWMParabola(9,0,21,0,0,70,0);
////// Place your custom code below here
tide.isIncoming();
byte tideSpeed = tide.CalcTide();
byte w_risehour = sun.GetRiseHour();
byte b_risehour = sun.GetRiseHour(); //Starting Blues an hour before
byte riseminute = sun.GetRiseMinute();
byte w_sethour = sun.GetSetHour();
byte b_sethour = (sun.GetSetHour()) + 1;
byte setminute = sun.GetSetMinute();
char label_rise_hr = sun.GetRiseHour();
char label_rise_min = sun.GetRiseMinute();
char label_set_hr = sun.GetSetHour();
char label_set_min = sun.GetSetMinute();
byte vtDuration = InternalMemory.RFDuration_read();
CheckCloud();
sun.CheckAndUpdate();
ReefAngel.DCPump.DaylightChannel = Sync;
ReefAngel.DCPump.ActinicChannel = AntiSync;
ReefAngel.PWM.SetChannel(0,PWMChannel[0]);
ReefAngel.PWM.SetChannel(1,PWMChannel[1]);
ReefAngel.PWM.SetChannel(2,PWMChannel[2]);
ReefAngel.PWM.SetChannel(3,PWMChannel[3]);
ReefAngel.DCPump.Threshold = 40;
if (hour() >= 0 && hour() < w_risehour) {
ReefAngel.DCPump.SetMode(Lagoon, tideSpeed, vtDuration);
}
else if (hour() >= w_sethour && hour() <= 24) {
ReefAngel.DCPump.SetMode(Lagoon, tideSpeed, vtDuration);
}
else if (hour() >= w_risehour && hour() <= w_sethour)
{
ReefAngel.DCPump.SetMode(Lagoon, tideSpeed, vtDuration);
}
////// Place your custom code above here
// This should always be the last line
ReefAngel.Portal( "saf1" );
ReefAngel.DDNS( "saf1-dns.myreefangel.com" ); // Your DDNS is saf1-saf1-dns.myreefangel.com.myreefangel.com
ReefAngel.ShowInterface();
}
//*********************************************************************************************************************************
// Random Cloud/Thunderstorm effects function
void CheckCloud()
{
// ------------------------------------------------------------
// Change the values below to customize your cloud/storm effect
// Frequency in days based on the day of the month - number 2 means every 2 days, for example (day 2,4,6 etc)
// For testing purposes, you can use 1 and cause the cloud to occur everyday
#define Clouds_Every_X_Days 1
// Percentage chance of a cloud happening today
// For testing purposes, you can use 100 and cause the cloud to have 100% chance of happening
#define Cloud_Chance_per_Day 45
// Minimum number of minutes for cloud duration. Don't use max duration of less than 6
#define Min_Cloud_Duration 7
// Maximum number of minutes for the cloud duration. Don't use max duration of more than 255
#define Max_Cloud_Duration 15
// Minimum number of clouds that can happen per day
#define Min_Clouds_per_Day 1
// Maximum number of clouds that can happen per day
#define Max_Clouds_per_Day 4
// Only start the cloud effect after this setting
// In this example, start could after 11:30am
#define Start_Cloud_After NumMins(11,30)
// Always end the cloud effect before this setting
// In this example, end could before 8:00pm
#define End_Cloud_Before NumMins(21,30)
// Percentage chance of a lightning happen for every cloud
// For testing purposes, you can use 100 and cause the lightning to have 100% chance of happening
#define Lightning_Change_per_Cloud 65
// Channels used by the actinic LEDs on the PWM Expansion module
// These channels will not be dimmed when the cloud effect is triggered
// Number is a binary form. B001100 means channel 2 and 3 are used for actinics
//#define Actinic_Channels B000001 // Original sample code values
#define Actinic_Channels B000001
// Channels used by the daylight LEDs on the PWM Expansion module
// These channels will be used for the spike when lightning effect is triggered
// Number is a binary form. B000011 means channel 0 and 1 are used for daylights
//#define Daylight_Channels B000010 // Original sample code values
#define Daylight_Channels B000010
// Note: Make sure to choose correct values that will work within your PWMSLope settings.
// For example, in our case, we could have a max of 5 clouds per day and they could last for 50 minutes.
// Which could mean 250 minutes of clouds. We need to make sure the PWMSlope can accomodate 250 minutes of effects or unforseen resul could happen.
// Also, make sure that you can fit double those minutes between Start_Cloud_After and End_Cloud_Before.
// In our example, we have 510 minutes between Start_Cloud_After and End_Cloud_Before, so double the 250 minutes (or 500 minutes) can fit in that 510 minutes window.
// It's a tight fit, but it did.
//#define printdebug // Uncomment this for debug print on Serial Monitor window
#define forcecloudcalculation // Uncomment this to force the cloud calculation to happen in the boot process.
// Change the values above to customize your cloud/storm effect
// ------------------------------------------------------------
// Do not change anything below here
static byte cloudchance=255;
static byte cloudduration=0;
static int cloudstart=0;
static byte numclouds=0;
static byte lightningchance=0;
static byte cloudindex=0;
static byte lightningstatus=0;
static int LastNumMins=0;
// Every day at midnight, we check for chance of cloud happening today
if (hour()==0 && minute()==0 && second()==0) cloudchance=255;
#ifdef forcecloudcalculation
if (cloudchance==255)
#else
if (hour()==0 && minute()==0 && second()==1 && cloudchance==255)
#endif
{
//Pick a random number between 0 and 99
cloudchance=random(100);
// if picked number is greater than Cloud_Chance_per_Day, we will not have clouds today
if (cloudchance>Cloud_Chance_per_Day) cloudchance=0;
// Check if today is day for clouds.
if ((day()%Clouds_Every_X_Days)!=0) cloudchance=0;
// If we have cloud today
if (cloudchance)
{
// pick a random number for number of clouds between Min_Clouds_per_Day and Max_Clouds_per_Day
numclouds=random(Min_Clouds_per_Day,Max_Clouds_per_Day);
// pick the time that the first cloud will start
// the range is calculated between Start_Cloud_After and the even distribuition of clouds on this day.
cloudstart=random(Start_Cloud_After,Start_Cloud_After+((End_Cloud_Before-Start_Cloud_After)/(numclouds*2)));
// pick a random number for the cloud duration of first cloud.
cloudduration=random(Min_Cloud_Duration,Max_Cloud_Duration);
//Pick a random number between 0 and 99
lightningchance=random(100);
// if picked number is greater than Lightning_Change_per_Cloud, we will not have lightning today
if (lightningchance>Lightning_Change_per_Cloud) lightningchance=0;
}
}
// Now that we have all the parameters for the cloud, let's create the effect
if (cloudchance)
{
//is it time for cloud yet?
if (NumMins(hour(),minute())>=cloudstart && NumMins(hour(),minute())<(cloudstart+cloudduration))
{
// let's go through all channels to pick which ones will be dimmed
for (int a=0;a<6;a++)
{
if (bitRead(Actinic_Channels,a)==0)
{
// this will slope down the channel from the current PWM to 0 within 3minutes.
// then it will stay at 0 for the duration of the cycle
// and finally slope up from 0 to PWM value within 3 minutes
// it is basically an inversed slope
PWMChannel[a]=ReversePWMSlope(cloudstart,cloudstart+cloudduration,PWMChannel[a],0,180);
}
}
if (lightningchance && (NumMins(hour(),minute())==(cloudstart+(cloudduration/2))) && second()<5)
{
for (int b=0;b<6;b++)
{
if (bitRead(Daylight_Channels,b)==1)
{
if (random(100)<20) lightningstatus=1;
else lightningstatus=0;
if (lightningstatus) PWMChannel[b]=100;
else PWMChannel[b]=0;
//delay(10);
}
else
{
PWMChannel[b]=20;
}
}
}
}
if (NumMins(hour(),minute())>(cloudstart+cloudduration))
{
cloudindex++;
if (cloudindex < numclouds)
{
cloudstart=random(Start_Cloud_After+(((End_Cloud_Before-Start_Cloud_After)/(numclouds*2))*cloudindex*2),(Start_Cloud_After+(((End_Cloud_Before-Start_Cloud_After)/(numclouds*2))*cloudindex*2))+((End_Cloud_Before-Start_Cloud_After)/(numclouds*2)));
// pick a random number for the cloud duration of first cloud.
cloudduration=random(Min_Cloud_Duration,Max_Cloud_Duration);
//Pick a random number between 0 and 99
lightningchance=random(100);
// if picked number is greater than Lightning_Change_per_Cloud, we will not have lightning today
if (lightningchance>Lightning_Change_per_Cloud) lightningchance=0;
}
}
}
if (LastNumMins!=NumMins(hour(),minute()))
{
LastNumMins=NumMins(hour(),minute());
ReefAngel.LCD.Clear(255,0,120,132,132);
ReefAngel.LCD.DrawText(0,255,5,120,"C");
ReefAngel.LCD.DrawText(0,255,11,120,"00:00");
ReefAngel.LCD.DrawText(0,255,45,120,"L");
ReefAngel.LCD.DrawText(0,255,51,120,"00:00");
if (cloudchance && (NumMins(hour(),minute())<cloudstart))
{
int x=0;
if ((cloudstart/60)>=10) x=11; else x=17;
ReefAngel.LCD.DrawText(0,255,x,120,(cloudstart/60));
if ((cloudstart%60)>=10) x=29; else x=35;
ReefAngel.LCD.DrawText(0,255,x,120,(cloudstart%60));
}
ReefAngel.LCD.DrawText(0,255,90,120,cloudduration);
if (lightningchance)
{
int x=0;
if (((cloudstart+(cloudduration/2))/60)>=10) x=51; else x=57;
ReefAngel.LCD.DrawText(0,255,x,120,((cloudstart+(cloudduration/2))/60));
if (((cloudstart+(cloudduration/2))%60)>=10) x=69; else x=75;
ReefAngel.LCD.DrawText(0,255,x,120,((cloudstart+(cloudduration/2))%60));
}
}
}
byte ReversePWMSlope(long cstart,long cend,byte PWMStart,byte PWMEnd, byte clength)
{
long n=elapsedSecsToday(now());
cstart*=60;
cend*=60;
if (n<cstart) return PWMStart;
if (n>=cstart && n<=(cstart+clength)) return map(n,cstart,cstart+clength,PWMStart,PWMEnd);
if (n>(cstart+clength) && n<(cend-clength)) return PWMEnd;
if (n>=(cend-clength) && n<=cend) return map(n,cend-clength,cend,PWMEnd,PWMStart);
if (n>cend) return PWMStart;
}