My RA is on my 14g biocube with retrofitted leds from Modularled. I have my whites and blues on two separate drivers. My whites are on a meanwell that is dimmed through PWM. I am successfully controlling my leds with the controller and simulating clouds and T-storms.
The first thing I would like to add is the code for a single low ATO. I have ordered the ATO kit from AVAST marine with the RA connection. I know I need to add the following line of code, but do not understand all the functions.
ReefAngel.SingleATO(true, Port1, 60, 1);
Could someone tell me what all the options do?
In the future I would like to make a custom main and menu system, but I would like to get the small things working first.
Below is my current PDE.
Code: Select all
// Autogenerated file by RAGen (v1.1.0.126), (01/30/2012 21:35)
// RA_013012_2135.pde
//
// This version designed for v0.8.5 Beta 17 or later
/* The following features are enabled for this PDE File:
#define MetalHalideSetup
#define DisplayLEDPWM
#define wifi
#define StandardLightSetup
#define WDT
#define PWMEXPANSION
*/
#include <ReefAngel_Features.h>
#include <ReefAngel_Colors.h>
#include <ReefAngel_CustomColors.h>
#include <ReefAngel_Globals.h>
#include <ReefAngel_Wifi.h>
#include <Wire.h>
#include <OneWire.h>
#include <Time.h>
#include <DS1307RTC.h>
#include <ReefAngel_EEPROM.h>
#include <ReefAngel_NokiaLCD.h>
#include <ReefAngel_ATO.h>
#include <ReefAngel_Joystick.h>
#include <ReefAngel_LED.h>
#include <ReefAngel_TempSensor.h>
#include <ReefAngel_Relay.h>
#include <ReefAngel_PWM.h>
#include <ReefAngel_Timer.h>
#include <ReefAngel_Memory.h>
#include <ReefAngel.h>
//----------------------------------------------------------------------------------------------------------------------------------------------------------
//Give labels to outlets for easier programming
//----------------------------------------------------------------------------------------------------------------------------------------------------------
#define Fan 8
#define Sump 7
#define Heater 6
#define Vortech 5
#define Return 4
#define Skimmer 3
#define BlueLED 2
#define WhiteLED 1
byte DaylightPWMValue=0;
void DrawCustomMain()
{
// the graph is drawn/updated when we exit the main menu &
// when the parameters are saved
ReefAngel.LCD.DrawDate(6, 112);
pingSerial();
#if defined DisplayLEDPWM && ! defined RemoveAllLights
ReefAngel.LCD.DrawMonitor(15, 60, ReefAngel.Params,
ReefAngel.PWM.GetDaylightValue(), ReefAngel.PWM.GetActinicValue());
#else // defined DisplayLEDPWM && ! defined RemoveAllLights
ReefAngel.LCD.DrawMonitor(15, 60, ReefAngel.Params);
#endif // defined DisplayLEDPWM && ! defined RemoveAllLights
pingSerial();
byte TempRelay = ReefAngel.Relay.RelayData;
TempRelay &= ReefAngel.Relay.RelayMaskOff;
TempRelay |= ReefAngel.Relay.RelayMaskOn;
ReefAngel.LCD.DrawOutletBox(12, 93, TempRelay);
}
void DrawCustomGraph()
{
ReefAngel.LCD.DrawGraph(5, 5);
}
void setup()
{
ReefAngel.Init(); //Initialize controller
ReefAngel.FeedingModePorts = B00010000;
ReefAngel.WaterChangePorts = B00011100;
ReefAngel.OverheatShutoffPorts = B00000011;
ReefAngel.LightsOnPorts = B00000011;
// Ports that are always on
ReefAngel.Relay.On(Skimmer);
ReefAngel.Relay.On(Return);
ReefAngel.Relay.On(Vortech);
ReefAngel.Relay.On(Fan);
}
void loop()
{
// Specific functions
ReefAngel.MHLights(WhiteLED);
ReefAngel.StandardLights(BlueLED);
ReefAngel.StandardHeater(Heater);
ReefAngel.PWM.SetActinic(MoonPhase());
DaylightPWMValue=PWMSlope(12,00,20,00,13,40,200,DaylightPWMValue);
//ReefAngel.PWM.SetActinic(MoonPhase());
//DaylightPWMValue=100;
CheckCloud();
ReefAngel.PWM.SetDaylight(DaylightPWMValue);
ReefAngel.ShowInterface();
}
//*********************************************************************************************************************************
// Random Cloud/Thunderstorm effects function
void CheckCloud()
{
// ------------------------------------------------------------
// Change the values below to customize your cloud/storm effect
// Frequency in days based on the day of the month - number 2 means every 2 days, for example (day 2,4,6 etc)
// For testing purposes, you can use 1 and cause the cloud to occur everyday
#define Clouds_Every_X_Days 1
// Percentage chance of a cloud happening today
// For testing purposes, you can use 100 and cause the cloud to have 100% chance of happening
#define Cloud_Chance_per_Day 100
// Minimum number of minutes for cloud duration. Don't use max duration of less than 6
#define Min_Cloud_Duration 5
// Maximum number of minutes for the cloud duration. Don't use max duration of more than 255
#define Max_Cloud_Duration 20
// Minimum number of clouds that can happen per day
#define Min_Clouds_per_Day 0
// Maximum number of clouds that can happen per day
#define Max_Clouds_per_Day 5
// Only start the cloud effect after this setting
// In this example, start could after 11:30am
#define Start_Cloud_After NumMins(00,00)
// Always end the cloud effect before this setting
// In this example, end could before 8:00pm
#define End_Cloud_Before NumMins(23,59)
// Percentage chance of a lightning happen for every cloud
// For testing purposes, you can use 100 and cause the lightning to have 100% chance of happening
#define Lightning_Change_per_Cloud 50
// Note: Make sure to choose correct values that will work within your PWMSLope settings.
// For example, in our case, we could have a max of 5 clouds per day and they could last for 50 minutes.
// Which could mean 250 minutes of clouds. We need to make sure the PWMSlope can accomodate 250 minutes of effects or unforseen resul could happen.
// Also, make sure that you can fit double those minutes between Start_Cloud_After and End_Cloud_Before.
// In our example, we have 510 minutes between Start_Cloud_After and End_Cloud_Before, so double the 250 minutes (or 500 minutes) can fit in that 510 minutes window.
// It's a tight fit, but it did.
//#define printdebug // Uncomment this for debug print on Serial Monitor window
#define forcecloudcalculation // Uncomment this to force the cloud calculation to happen in the boot process.
// Change the values above to customize your cloud/storm effect
// ------------------------------------------------------------
// Do not change anything below here
static byte cloudchance=255;
static byte cloudduration=0;
static int cloudstart=0;
static byte numclouds=0;
static byte lightningchance=0;
static byte cloudindex=0;
static byte lightningstatus=0;
static int LastNumMins=0;
// Every day at midnight, we check for chance of cloud happening today
if (hour()==0 && minute()==0 && second()==0) cloudchance=255;
#ifdef forcecloudcalculation
if (cloudchance==255)
#else
if (hour()==0 && minute()==0 && second()==1 && cloudchance==255)
#endif
{
//Pick a random number between 0 and 99
cloudchance=random(100);
// if picked number is greater than Cloud_Chance_per_Day, we will not have clouds today
if (cloudchance>Cloud_Chance_per_Day) cloudchance=0;
// Check if today is day for clouds.
if ((day()%Clouds_Every_X_Days)!=0) cloudchance=0;
// If we have cloud today
if (cloudchance)
{
// pick a random number for number of clouds between Min_Clouds_per_Day and Max_Clouds_per_Day
numclouds=random(Min_Clouds_per_Day,Max_Clouds_per_Day);
// pick the time that the first cloud will start
// the range is calculated between Start_Cloud_After and the even distribuition of clouds on this day.
cloudstart=random(Start_Cloud_After,Start_Cloud_After+((End_Cloud_Before-Start_Cloud_After)/(numclouds*2)));
// pick a random number for the cloud duration of first cloud.
cloudduration=random(Min_Cloud_Duration,Max_Cloud_Duration);
//Pick a random number between 0 and 99
lightningchance=random(100);
// if picked number is greater than Lightning_Change_per_Cloud, we will not have lightning today
if (lightningchance>Lightning_Change_per_Cloud) lightningchance=0;
}
}
// Now that we have all the parameters for the cloud, let's create the effect
if (cloudchance)
{
//is it time for cloud yet?
if (NumMins(hour(),minute())>=cloudstart && NumMins(hour(),minute())<(cloudstart+cloudduration))
{
DaylightPWMValue=ReversePWMSlope(cloudstart,cloudstart+cloudduration,DaylightPWMValue,0,180);
if (lightningchance && (NumMins(hour(),minute())==(cloudstart+(cloudduration/2))) && second()<10)
{
if (random(100)<20) lightningstatus=1;
else lightningstatus=0;
if (lightningstatus)
{
DaylightPWMValue=100;
}
else
{
DaylightPWMValue=0;
}
delay(1);
}
}
if (NumMins(hour(),minute())>(cloudstart+cloudduration))
{
cloudindex++;
if (cloudindex < numclouds)
{
cloudstart=random(Start_Cloud_After+(((End_Cloud_Before-Start_Cloud_After)/(numclouds*2))*cloudindex*2),(Start_Cloud_After+(((End_Cloud_Before-Start_Cloud_After)/(numclouds*2))*cloudindex*2))+((End_Cloud_Before-Start_Cloud_After)/(numclouds*2)));
// pick a random number for the cloud duration of first cloud.
cloudduration=random(Min_Cloud_Duration,Max_Cloud_Duration);
//Pick a random number between 0 and 99
lightningchance=random(100);
// if picked number is greater than Lightning_Change_per_Cloud, we will not have lightning today
if (lightningchance>Lightning_Change_per_Cloud) lightningchance=0;
}
}
}
if (LastNumMins!=NumMins(hour(),minute()))
{
LastNumMins=NumMins(hour(),minute());
ReefAngel.LCD.Clear(255,0,120,132,132);
ReefAngel.LCD.DrawText(0,255,5,120,"C");
ReefAngel.LCD.DrawText(0,255,11,120,"00:00");
ReefAngel.LCD.DrawText(0,255,45,120,"L");
ReefAngel.LCD.DrawText(0,255,51,120,"00:00");
if (cloudchance && (NumMins(hour(),minute())<cloudstart))
{
int x=0;
if ((cloudstart/60)>=10) x=11; else x=17;
ReefAngel.LCD.DrawText(0,255,x,120,(cloudstart/60));
if ((cloudstart%60)>=10) x=29; else x=35;
ReefAngel.LCD.DrawText(0,255,x,120,(cloudstart%60));
}
ReefAngel.LCD.DrawText(0,255,90,120,cloudduration);
if (lightningchance)
{
int x=0;
if (((cloudstart+(cloudduration/2))/60)>=10) x=51; else x=57;
ReefAngel.LCD.DrawText(0,255,x,120,((cloudstart+(cloudduration/2))/60));
if (((cloudstart+(cloudduration/2))%60)>=10) x=69; else x=75;
ReefAngel.LCD.DrawText(0,255,x,120,((cloudstart+(cloudduration/2))%60));
}
}
}
byte ReversePWMSlope(long cstart,long cend,byte PWMStart,byte PWMEnd, byte clength)
{
long n=elapsedSecsToday(now());
cstart*=60;
cend*=60;
if (n<cstart) return PWMStart;
if (n>=cstart && n<=(cstart+clength)) return map(n,cstart,cstart+clength,PWMStart,PWMEnd);
if (n>(cstart+clength) && n<(cend-clength)) return PWMEnd;
if (n>=(cend-clength) && n<=cend) return map(n,cend-clength,cend,PWMEnd,PWMStart);
if (n>cend) return PWMStart;
}