Is it possible to adjust or set, maybe predict, when the tip of the reef crest or wave pattern will hit during the day? Not sure how to add a image but using the PWMA graph on the portal, http://forum.reefangel.com/status/chart ... ilter=PWMA, my pattern appears to be peaking during the evening between 2 and 4 AM when I'd like it a lot calmer - has does my anemone's.
I made a few changes over the last couple of weeks to my code so not sure what it was that set it to this timeline if truth be told. I've been trying to find a suitable wave pattern for a mostly soft tank, 40 breeder, that will stop two of my rose bubble tips from moving around. I've tried turning on one side, then the other, every 12 hours, then this which was doing ok until I noticed at night everything is storming high. Figured I'd ask. Also, I thought I saw in the portal graphs showing wave patterns. Maybe lagoon isn't right or I am using it wrong. I just need the ideal one to let the hammers, and 'nems wave and the Xenia not being blown over.
Thanks for any tips or guidance. Maybe this will force me to uncrate my 240 gallon in the garage and start working on it. The anenomes will probably thank me for it later. Worst purchase ever - started with one about 7 years ago and now I have 6 The 40 is too small.
Thanks again.
Code: Select all
#include <ReefAngel_Features.h>
#include <Globals.h>
#include <RA_Wifi.h>
#include <Wire.h>
#include <OneWire.h>
#include <Time.h>
#include <DS1307RTC.h>
#include <InternalEEPROM.h>
#include <RA_NokiaLCD.h>
#include <RA_ATO.h>
#include <RA_Joystick.h>
#include <LED.h>
#include <RA_TempSensor.h>
#include <Relay.h>
#include <RA_PWM.h>
#include <Timer.h>
#include <Memory.h>
#include <InternalEEPROM.h>
#include <RA_Colors.h>
#include <RA_CustomColors.h>
#include <Salinity.h>
#include <RF.h>
#include <IO.h>
#include <ORP.h>
#include <AI.h>
#include <PH.h>
#include <WaterLevel.h>
#include <Humidity.h>
#include <DCPump.h>
#include <ReefAngel.h>
#include <Moon.h>
#include <Tide.h> // testing for tide control
#include <SunLocation.h>
////// Place global variable code below here
Tide tide; // testing for tide control
SunLocation sun;
byte PWMChannel[6];
////// Place global variable code above here
void setup()
{
// This must be the first line
ReefAngel.Init(); //Initialize controller
ReefAngel.AddStandardMenu(); // Add Standard Menu
ReefAngel.Use2014Screen();
ReefAngel.AddPHExpansion(); // pH Expansion Module
// Ports toggled in Feeding Mode
ReefAngel.FeedingModePorts = Port1Bit | Port5Bit | Port6Bit | Port7Bit | Port8Bit;
// Ports toggled in Water Change Mode
ReefAngel.WaterChangePorts = Port1Bit | Port5Bit | Port6Bit | Port7Bit | Port8Bit;
// Ports toggled when Lights On / Off menu entry selected
ReefAngel.LightsOnPorts = 0;
// Ports turned off when Overheat temperature exceeded
ReefAngel.OverheatShutoffPorts = Port7Bit | Port8Bit;
// Use T1 probe as temperature and overheat functions
ReefAngel.TempProbe = T1_PROBE;
ReefAngel.OverheatProbe = T1_PROBE;
// Set the Overheat temperature setting
InternalMemory.OverheatTemp_write( 819 );
// Feeeding and Water Change mode speed
ReefAngel.DCPump.FeedingSpeed=0;
ReefAngel.DCPump.WaterChangeSpeed=0;
// Ports that are always on
ReefAngel.Relay.On( Port1 ); // skimmer
// ReefAngel.Relay.On( Port4 ); // LED Fans
ReefAngel.Relay.On( Port5 ); // RW 4 left side facing tank
ReefAngel.Relay.On( Port6 ); // RW 4 right side facing tank
////// Place additional initialization code below here
tide.Init(40, 5, 20);
tide.SetWaveLength(12*SECS_PER_HOUR);
sun.Init(38.5791, 121.1939); // Rancho Cordova, Ca
////// Place additional initialization code above here
}
void loop()
{
ReefAngel.DCPump.UseMemory = false;
ReefAngel.StandardLights( Port2,9,0,21,0 ); // power to LED power supply
ReefAngel.StandardLights( Port3,9,0,22,0 ); // LED bar
ReefAngel.StandardLights( Port4,9,0,21,0 ); // LED fans
ReefAngel.StandardHeater( Port7,750,800 );
ReefAngel.StandardHeater( Port8,750,800 );
// Channel 0 (1000mA max) - 5 Neutral White
PWMChannel[0]=PWMParabola(9,0,21,0,0,80,0);
// Channel 1 (1000mA max) - 6 Royal Blue + 5 Blue
PWMChannel[1]=PWMParabola(9,0,21,0,0,85,0);
// Channel 2 (700mA max) - 12 Lime
PWMChannel[2]=PWMParabola(9,0,21,0,0,55,0);
// Channel 3 (700mA max) - 5 Violet UV + 4 Deep Red (660nm)
PWMChannel[3]=PWMParabola(9,0,21,0,0,70,0);
////// Place your custom code below here
tide.isIncoming();
byte tideSpeed = tide.CalcTide();
byte w_risehour = sun.GetRiseHour();
byte b_risehour = sun.GetRiseHour(); //Starting Blues an hour before
byte riseminute = sun.GetRiseMinute();
byte w_sethour = sun.GetSetHour();
byte b_sethour = (sun.GetSetHour()) + 1;
byte setminute = sun.GetSetMinute();
char label_rise_hr = sun.GetRiseHour();
char label_rise_min = sun.GetRiseMinute();
char label_set_hr = sun.GetSetHour();
char label_set_min = sun.GetSetMinute();
byte vtDuration = InternalMemory.RFDuration_read();
CheckCloud();
sun.CheckAndUpdate();
ReefAngel.DCPump.DaylightChannel = Sync;
ReefAngel.DCPump.ActinicChannel = AntiSync;
ReefAngel.PWM.SetChannel(0,PWMChannel[0]);
ReefAngel.PWM.SetChannel(1,PWMChannel[1]);
ReefAngel.PWM.SetChannel(2,PWMChannel[2]);
ReefAngel.PWM.SetChannel(3,PWMChannel[3]);
ReefAngel.DCPump.Threshold = 40;
if (hour() >= 0 && hour() < w_risehour) {
ReefAngel.DCPump.SetMode(Lagoon, tideSpeed, vtDuration);
}
else if (hour() >= w_sethour && hour() <= 24) {
ReefAngel.DCPump.SetMode(Lagoon, tideSpeed, vtDuration);
}
else if (hour() >= w_risehour && hour() <= w_sethour)
{
ReefAngel.DCPump.SetMode(LongPulse, tideSpeed, vtDuration);
}
////// Place your custom code above here
// This should always be the last line
ReefAngel.Portal( "saf1" );
ReefAngel.DDNS( "saf1-dns.myreefangel.com" ); // Your DDNS is saf1-saf1-dns.myreefangel.com.myreefangel.com
ReefAngel.ShowInterface();
}
//*********************************************************************************************************************************
// Random Cloud/Thunderstorm effects function
void CheckCloud()
{
// ------------------------------------------------------------
// Change the values below to customize your cloud/storm effect
// Frequency in days based on the day of the month - number 2 means every 2 days, for example (day 2,4,6 etc)
// For testing purposes, you can use 1 and cause the cloud to occur everyday
#define Clouds_Every_X_Days 1
// Percentage chance of a cloud happening today
// For testing purposes, you can use 100 and cause the cloud to have 100% chance of happening
#define Cloud_Chance_per_Day 45
// Minimum number of minutes for cloud duration. Don't use max duration of less than 6
#define Min_Cloud_Duration 7
// Maximum number of minutes for the cloud duration. Don't use max duration of more than 255
#define Max_Cloud_Duration 15
// Minimum number of clouds that can happen per day
#define Min_Clouds_per_Day 1
// Maximum number of clouds that can happen per day
#define Max_Clouds_per_Day 4
// Only start the cloud effect after this setting
// In this example, start could after 11:30am
#define Start_Cloud_After NumMins(11,30)
// Always end the cloud effect before this setting
// In this example, end could before 8:00pm
#define End_Cloud_Before NumMins(21,30)
// Percentage chance of a lightning happen for every cloud
// For testing purposes, you can use 100 and cause the lightning to have 100% chance of happening
#define Lightning_Change_per_Cloud 65
// Channels used by the actinic LEDs on the PWM Expansion module
// These channels will not be dimmed when the cloud effect is triggered
// Number is a binary form. B001100 means channel 2 and 3 are used for actinics
//#define Actinic_Channels B000001 // Original sample code values
#define Actinic_Channels B000001
// Channels used by the daylight LEDs on the PWM Expansion module
// These channels will be used for the spike when lightning effect is triggered
// Number is a binary form. B000011 means channel 0 and 1 are used for daylights
//#define Daylight_Channels B000010 // Original sample code values
#define Daylight_Channels B000010
// Note: Make sure to choose correct values that will work within your PWMSLope settings.
// For example, in our case, we could have a max of 5 clouds per day and they could last for 50 minutes.
// Which could mean 250 minutes of clouds. We need to make sure the PWMSlope can accomodate 250 minutes of effects or unforseen resul could happen.
// Also, make sure that you can fit double those minutes between Start_Cloud_After and End_Cloud_Before.
// In our example, we have 510 minutes between Start_Cloud_After and End_Cloud_Before, so double the 250 minutes (or 500 minutes) can fit in that 510 minutes window.
// It's a tight fit, but it did.
//#define printdebug // Uncomment this for debug print on Serial Monitor window
#define forcecloudcalculation // Uncomment this to force the cloud calculation to happen in the boot process.
// Change the values above to customize your cloud/storm effect
// ------------------------------------------------------------
// Do not change anything below here
static byte cloudchance=255;
static byte cloudduration=0;
static int cloudstart=0;
static byte numclouds=0;
static byte lightningchance=0;
static byte cloudindex=0;
static byte lightningstatus=0;
static int LastNumMins=0;
// Every day at midnight, we check for chance of cloud happening today
if (hour()==0 && minute()==0 && second()==0) cloudchance=255;
#ifdef forcecloudcalculation
if (cloudchance==255)
#else
if (hour()==0 && minute()==0 && second()==1 && cloudchance==255)
#endif
{
//Pick a random number between 0 and 99
cloudchance=random(100);
// if picked number is greater than Cloud_Chance_per_Day, we will not have clouds today
if (cloudchance>Cloud_Chance_per_Day) cloudchance=0;
// Check if today is day for clouds.
if ((day()%Clouds_Every_X_Days)!=0) cloudchance=0;
// If we have cloud today
if (cloudchance)
{
// pick a random number for number of clouds between Min_Clouds_per_Day and Max_Clouds_per_Day
numclouds=random(Min_Clouds_per_Day,Max_Clouds_per_Day);
// pick the time that the first cloud will start
// the range is calculated between Start_Cloud_After and the even distribuition of clouds on this day.
cloudstart=random(Start_Cloud_After,Start_Cloud_After+((End_Cloud_Before-Start_Cloud_After)/(numclouds*2)));
// pick a random number for the cloud duration of first cloud.
cloudduration=random(Min_Cloud_Duration,Max_Cloud_Duration);
//Pick a random number between 0 and 99
lightningchance=random(100);
// if picked number is greater than Lightning_Change_per_Cloud, we will not have lightning today
if (lightningchance>Lightning_Change_per_Cloud) lightningchance=0;
}
}
// Now that we have all the parameters for the cloud, let's create the effect
if (cloudchance)
{
//is it time for cloud yet?
if (NumMins(hour(),minute())>=cloudstart && NumMins(hour(),minute())<(cloudstart+cloudduration))
{
// let's go through all channels to pick which ones will be dimmed
for (int a=0;a<6;a++)
{
if (bitRead(Actinic_Channels,a)==0)
{
// this will slope down the channel from the current PWM to 0 within 3minutes.
// then it will stay at 0 for the duration of the cycle
// and finally slope up from 0 to PWM value within 3 minutes
// it is basically an inversed slope
PWMChannel[a]=ReversePWMSlope(cloudstart,cloudstart+cloudduration,PWMChannel[a],0,180);
}
}
if (lightningchance && (NumMins(hour(),minute())==(cloudstart+(cloudduration/2))) && second()<5)
{
for (int b=0;b<6;b++)
{
if (bitRead(Daylight_Channels,b)==1)
{
if (random(100)<20) lightningstatus=1;
else lightningstatus=0;
if (lightningstatus) PWMChannel[b]=100;
else PWMChannel[b]=0;
//delay(10);
}
else
{
PWMChannel[b]=20;
}
}
}
}
if (NumMins(hour(),minute())>(cloudstart+cloudduration))
{
cloudindex++;
if (cloudindex < numclouds)
{
cloudstart=random(Start_Cloud_After+(((End_Cloud_Before-Start_Cloud_After)/(numclouds*2))*cloudindex*2),(Start_Cloud_After+(((End_Cloud_Before-Start_Cloud_After)/(numclouds*2))*cloudindex*2))+((End_Cloud_Before-Start_Cloud_After)/(numclouds*2)));
// pick a random number for the cloud duration of first cloud.
cloudduration=random(Min_Cloud_Duration,Max_Cloud_Duration);
//Pick a random number between 0 and 99
lightningchance=random(100);
// if picked number is greater than Lightning_Change_per_Cloud, we will not have lightning today
if (lightningchance>Lightning_Change_per_Cloud) lightningchance=0;
}
}
}
if (LastNumMins!=NumMins(hour(),minute()))
{
LastNumMins=NumMins(hour(),minute());
ReefAngel.LCD.Clear(255,0,120,132,132);
ReefAngel.LCD.DrawText(0,255,5,120,"C");
ReefAngel.LCD.DrawText(0,255,11,120,"00:00");
ReefAngel.LCD.DrawText(0,255,45,120,"L");
ReefAngel.LCD.DrawText(0,255,51,120,"00:00");
if (cloudchance && (NumMins(hour(),minute())<cloudstart))
{
int x=0;
if ((cloudstart/60)>=10) x=11; else x=17;
ReefAngel.LCD.DrawText(0,255,x,120,(cloudstart/60));
if ((cloudstart%60)>=10) x=29; else x=35;
ReefAngel.LCD.DrawText(0,255,x,120,(cloudstart%60));
}
ReefAngel.LCD.DrawText(0,255,90,120,cloudduration);
if (lightningchance)
{
int x=0;
if (((cloudstart+(cloudduration/2))/60)>=10) x=51; else x=57;
ReefAngel.LCD.DrawText(0,255,x,120,((cloudstart+(cloudduration/2))/60));
if (((cloudstart+(cloudduration/2))%60)>=10) x=69; else x=75;
ReefAngel.LCD.DrawText(0,255,x,120,((cloudstart+(cloudduration/2))%60));
}
}
}
byte ReversePWMSlope(long cstart,long cend,byte PWMStart,byte PWMEnd, byte clength)
{
long n=elapsedSecsToday(now());
cstart*=60;
cend*=60;
if (n<cstart) return PWMStart;
if (n>=cstart && n<=(cstart+clength)) return map(n,cstart,cstart+clength,PWMStart,PWMEnd);
if (n>(cstart+clength) && n<(cend-clength)) return PWMEnd;
if (n>=(cend-clength) && n<=cend) return map(n,cend-clength,cend,PWMEnd,PWMStart);
if (n>cend) return PWMStart;
}